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The potential of near-infrared transflectance spectroscopy (1100-2498 nm) combined with chemo-
metric techniques to confirm the geographical origin of European olive oil samples was evaluated. In
total, 913 extra virgin olive oil samples (210 Ligurian and 703 non-Ligurian) were collected over three
consecutive harvests (2005, 2006, and 2007). A multivariate spectral fingerprint for Ligurian olive oil
was developed and deployed to confirm or refute a claim that any given sample was Ligurian. Samples
were pseudorandomly split into calibration (n ) 280) and validation sets (n ) 633); the only selection
constraint applied was to insist on equal numbers of Ligurian and non-Ligurian samples in the
calibration set. Following preliminary examination by principal component analysis, the full spectrum
modeling method applied to the spectral data set was discriminant partial least-squares regression;
various data pretreatments were also investigated. The best models correctly predicted the origins
of samples in the prediction set up to 92.8 and 81.5% for Ligurian and non-Ligurian olive oil samples,
respectively, using a first-derivative data pretreatment. The potential of this approach in commercial
traceability and quality assurance schemes is noted.
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INTRODUCTION

Olive oil is obtained from the fruit of the olive tree (Olea
europaea L.) and is a genuine fruit juice with excellent
nutritional, sensory, and functional qualities (1). Consumer
interest in olive oil as a healthy food source has increased due
to its polyunsaturated fatty acid composition and content of other
functional food components (2). The main phenolics in olive
oil include hydroxytyrosol, tyrosol, and oleuropein, which occur
in the highest levels in virgin olive oil and have demonstrated
antioxidant activity (3). Oleic acid, a monounsaturated fatty acid,
and squalene have been identified as having anticancer effects;
olive oil consumption has also been linked with benefits for
colon and breast cancer prevention and with its ability to reduce
blood pressure and low-density lipoprotein (LDL) cholesterol
(3). Virgin olive oils are the oils obtained solely by mechanical
or other physical means under conditions, particularly thermal
conditions, that do not lead to alterations in the oil and which
have not undergone any treatment other than washing, decanting,
centrifugation, and filtration (3). Extra virgin olive oil is virgin
olive oil that has a free acidity, expressed as oleic acid, of not
more than 0.8 g/100 g, and the other characteristics of which
correspond to those specified for this category (4). This type of
oil is of limited production and viewed as high quality; as a
result, extra virgin olive oil is one of the more expensive

vegetable oils (5). An additional quality factor associated with
such oils in the mind of the consumer is the geographical area
of production, or provenance; oils from certain regions are
viewed as superior in quality to others (6). To clearly label high-
quality food products, the European Union (EU) has created
specific terms governing provenance claims such as protected
designation of origin (PDO); PDO is a term used to describe
foodstuffs that are produced, processed, and prepared in specific,
controlled, and limited geographic areas using recognized
methods (7). Under EU law, only 85 geographical areas are
permitted to use a PDO label for their olive oils15 Greek, 19
Spanish, 7 French, 37 Italian, 1 Slovenian, and 6 Portuguese
(8). Ligurian olive oil (Riviera Ligure) is one such PDO
category. These facts coupled with the quality aspects associated
with extra virgin olive oils in general mean that such oils may
be particularly susceptible to economic fraud. Specifically with
regard to provenance, this would involve false claims of origin
on product labels. The consumer and food industry in general
need protection from such fraudulent labeling.

The combination of near-infrared (NIR) spectroscopy and
chemometric data analysis techniques provides a powerful set
of tools for quantitative and qualitative modeling of a wide
variety of foodstuffs and food production processes (9). Recent
reported applications of NIR spectroscopy in edible oil analysis
include adulteration detection (10, 11), geographical origin
prediction (12), quality parameter determination (13, 14),
classification (15, 16), and online monitoring of carotenoid and
chlorophyll pigments (17). NIR spectroscopy facilitates real-
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time measurements at all stages of production from raw material
analysis to ingredient and finished product verification; it offers
a fast, nondestructive, and cost-effective method of food analysis
(18).

The objective of this paper is to report investigations on the
potential of NIR spectroscopy and chemometric techniques to
confirm a specific provenance claim relating to olive oils, that
is, that a sample claimed to originate in Liguria actually does
so. The approach used involved collection of authentic olive
oils from this and other important olive oil producing regions
of Europe over a number of production harvests.

MATERIALS AND METHODS

Sample Collection and Preparation. Olive oil samples were
collected from a number of different areas in Europe as part of the
EU-funded TRACE project (19) over a period spanning three har-
vestss2005, 2006, and 2007; all olive oil samples were analyzed shortly
after harvest. Numbers and sources of samples in each of these years
are shown in Table 1. All oils were transported to a single laboratory
(Joint Research Centre, Ispra, Italy) for subsampling and delivery by
air to Ashtown Food Research Centre. Oils from harvest 2 (2006) were
collected and distributed in two separate batches. All olive oils were
stored in a refrigerated room (4 °C) between delivery and spectral
acquisition (<2 weeks), minimizing the chance of any significant change
occurring during this period.

Spectral Collection. Olive oil samples (approximately 50 mL) were
placed in screw-capped glass vials in a water bath maintained at 30 °C
and allowed to equilibrate for 30 min before spectral acquisition.
Transflectance spectra (1100-2498 nm) were collected using a camlock
cell and a gold-plated reflector (0.1 mm sample thickness; part 99213)
on a scanning spectrophotometer (NIR Systems 6500, NIR Systems
Inc., Silver Spring MD). Between samples, this cell was cleaned using
tepid distilled water, then Triton X-100 solution (0.1% w/w), and finally
rinsed with tepid distilled water before drying with a paper tissue; all
washing liquids were equilibrated at 30 °C. Spectra were recorded in
triplicate for each sample, and the mean of these replicates was used
in subsequent calculations. WINISI software (v 1.05; ISI International,
Port Matilda, PA) was used for spectrophotometer control and spectral
file manipulation. Spectra were exported from WINISI in JCAMP.DX
format (20) and imported into The Unscrambler (v. 9.2; CAMO A/S,
Oslo, Norway) for statistical analysis.

Statistical Analysis. Principal component analysis (PCA) was
initially carried out on the raw spectral data to (a) assist with the
detection of any outlying or unusual samples and (b) investigate any
possible clustering of samples on the basis of their provenance.
Development of class models to identify samples as originating in
Liguria or not was performed by partial least-squares discriminant
analysis (PLS-DA). For this purpose, a dummy Y-variable was assigned
to each oil sample, 1 for Ligurian and 0 for non-Ligurian olive oils.
To determine the univariate specification, a cutoff point of 0.5 was
assigned to the resulting PLS predictions; samples predicted as having
a value of g0.5 were classified by the model as being Ligurian, and
all other samples were classified as being non-Ligurian. PLS1 calibration
models were initially developed using the complete data set with full,
that is, leave-one-out cross-validation. Following this, the sample set
was split up into two groups with two-thirds of the total samples being
used as a calibration set and the remaining one-third of samples acting
as a validation or test set, for the calibration models. To remove or at
least minimize unwanted spectral contributions arising, for example,

from light scatter (9), first- and second-derivative pretreatments using
the Savitzky-Golay (21, 22) method and the standard normal variate
(SNV) transform (23) were investigated for all models. In this way,
10 models (raw, first derivative with 5, 9, 13, and 21 points, second
derivative with 5, 9, 13, and 21 points, and SNV) were created for
each technique, as can be seen in the tables.

Given the imbalance between Ligurian and non-Ligurian samples
in the olive oil collection, calibration models developed as stated above
are, in statistical terms, unbalanced. Balanced models were then
developed using equal numbers of Ligurian and non-Ligurian olive oil
samples in the calibration set; two-thirds of all the Ligurian samples
were chosen at random as was an equal number of non-Ligurian
samples. Calibrations thus developed were validated on the remaining
oil samples. The imbalance between Ligurian and non-Ligurian oils in
this sample set poses no statistical difficulty and may be considered to
be representative of sample testing in the future.

Finally, in an effort to enhance model robustness and specificity, a
variable selection algorithm, the jack-knife uncertainty test (24), was
applied both to the original data set and to the calibration set containing
equal numbers of Ligurian and non-Ligurian samples. This test was
used to avoid misinterpreting spurious effects, to identify the dominating
sources of instability in the modeling, and to allow more or less
automatic optimization of the models (24). It aims to predict the most
important X-variables (wavelengths) for model development, and after
their identification, models were recreated using only the wavelength
regions indicated. An analysis of misclassified Ligurian olive oil samples
was carried out at this point in an effort to compare models created
using the original data and models created after application of this
variable selection algorithm.

Classification results are presented in terms of percent correct
classification, percent misclassification, sensitivity, and specificity.
Sensitivity is the probability that a given model will classify a test
sample as positive given that it is known to be positive, that is, the
probability that an authentic Ligurian olive oil sample will be correctly
identified as originating in Liguria. Sensitivity is the ratio number of
predicted positive classifications to total number of actual positives (25).
Model specificity is the probability that a model will classify a test
sample as not belonging to the model given that it is known not to
belong. In this case, it is the probability that an olive oil sample from
a region outside Liguria is classified correctly as being non-Ligurian
in origin. Specificity is calculated as the ratio of the number of predicted
negative classifications to the number of known negatives (25).

RESULTS AND DISCUSSION

Data Examination. Spectra of randomly selected samples,
both Ligurian and non-Ligurian, representing each of the three
harvests are shown in Figure 1. The main peak locations are
marked in Figure 1, and the chemical parameters to which they

Table 1. Sources of Olive Oil Samples

Italy

harvest Liguria non-Liguria Greece Spain France Cyprus Turkey total

2005 79 173 46 38 10 6 0 352
2006 63 163 25 42 9 0 14 316
2007 68 116 7 34 20 0 0 245

total 210 452 78 114 39 6 14 913

Figure 1. NIR (1100-2498 nm) transflectance spectra of a random
selection of olive oils from Liguria and non-Ligurian regions over three
harvests (see Table 2 for explanation of symbols).
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relate are outlined in Table 2 (26, 27). The most important
absorption maxima are clearly evident at 1211, 1727, 1761,
2310, and 2350 nm. Bands around 1211 nm arise from second
overtones of C-H stretching vibrations (28), whereas those at
1727 and 1761 nm are attributed to the first overtone of C-H
stretching vibrations of methyl, methylene, and ethylene groups
(10). Absorbances at 2310 and 2350 nm arise from combination
bands arising from C-H stretching vibrations and other
vibrational modes (28).

As part of initial data examination, PCA was performed on
the complete, raw spectral data set. Figure 2 is the most
informative scores plot available, showing a good deal of
clustering; PC1 (accounting for 82% of the variation) is plotted
against PC2 (accounting for 16% of the variation), revealing
some clustering behavior that relates to production harvest
or scanning time. The former phenomenon may be seen in the
separation of samples from harvests 1 and 3, whereas the
separation of samples from harvest 2 into two groups may be
related to the latter. It is unclear what underlies this split
distribution of harvest 2 samplessit could involve issues related
to sampling, storage, climate, chemical composition, or analysis.

In these two dimensions, the main separation (along PC1) relates
to spectral differences between oils from harvest 1 and those
from harvest 2. Such seasonal differences often originate in
weather conditions during growth and harvesting, and anecdotal
evidence of major differences in these conditions in 2005, 2006,
and 2007 was supplied by oil sample collectors. A plot showing
the PCA loadings for PC1 and PC2 is shown in Figure 3. Two
potential outlier samples (data points that are numerically distant
from the rest of the data but for which there is no other
supporting information to merit their deletion) that originated
in harvest 1 are marked in Figure 2; these samples also show
a very high leverage in the residual X-variance plot (not shown).
Particular attention was paid to these possible outliers in
subsequent work, but they were not excluded from PLS-DA
regression analysis as their removal (a) did not affect the spatial
distribution of the other samples and (b) did not adversely affect
the corresponding prediction models. The scores plot showing
PC3 against PC1 revealed the existence of the same two outliers,
this time along PC3; they do not show up as being obvious
outliers along any other PC. Regions of interest in the X-loadings
plots for PC2 and PC3 are 1724, 1766, 2304, and 2342 nm,
which suggests that a combination of the functional groups
associated with these spectral locations, all of which were
discussed in relation to Figure 1, could be responsible for these
outliers. However, all of these spectral locations are also shown
to be important in the X-loading plot of PC1, which means that,
although they may be responsible for the location of the outliers,
they are also mainly responsible for the separation shown along
PC1 between olive oil samples from different harvests.

Further examination of Figure 2 reveals some possible
clustering within the samples from harvest 3 in this two-
dimensional principal component space. It is not possible to
advance any explanation for this behavior on the basis of the
sample information supplied. The color scheme in Figure 2
shows Ligurian samples in blue and non-Ligurian samples in
red; it is apparent that there is complete overlap between
Ligurian and non-Ligurian samples in these two principal
component dimensions.

PLS-DA Regression. PLS-DA classification models were
initially developed on the complete sample data set (n ) 913
olive oils) using complete (1100-2498 nm) spectral data and
full (leave-one-out) cross-validation; summary results are
presented in Table 3 as percent correct classifications (percent
correct classification of Ligurian samples relating to sensitivity
results and percent correct classification of non-Ligurian samples

Table 2. Functional Group Assignmenta in Olive Oil Spectra (See Figure 1)

notation
wavelength

(nm) functional group assignment

a 1168 CH3- CsH stretch second overtone
b 1211 -CH2- CsH stretch second overtone
c 1391 CH3- 2CsH str + CsHdef
d 1414 -CH2- 2CsH str + CsHdef
e 1664 cis R1CHdCHR2CH3- cis CH
f 1727 -CH2- CsH first overtone
g 1761 CsH first overtone
h 1901 CdO str second overtone
i 1931 CdO str second overtone ester
j 2124 -COOR CsH str + CdO str
k 2145 -HCdCH- dCH str+ CdO str
l 2176 -HCdCH- CH assym str + CdC str
m 2310 CH combinations and deformation
n 2350 CH combinations and deformation

a Functional groups assigned per refs 26-29.

Figure 2. PCA scores plot (complete sample data set; raw data;
1100-2498 nm).

Figure 3. PCA loadings plot.
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relating to specificity results). A number of observations may
be made on these results: (a) all discriminant models developed
involved between 6 and 9 PLS loadings with 7 and 8 being the
most common numbers; (b) percentage correct classification
results for Ligurian were low, ranging from a minimum of
31.9% obtained with SNV-treated data up to a maximum of
49.5% in the case of a second-derivative transform (20 data
point gap). Therefore, in most cases, model sensitivity was low,
whereas specificity was high, >0.90. This low sensitivity is
likely to arise from the obvious imbalance in the numbers of
Ligurian (n ) 210) and non-Ligurian (n ) 703) samples in the
oil collection.

Separate Validation Sample Set. In an effort to improve
the performance of models described above, a different strategy
was adopted using equal numbers of Ligurian and non-Ligurian
samples in the calibration set (n ) 280), as described under
Statistical Analysis. All of the remaining samples (70 Ligurian
and 563 non-Ligurian) were used as a validation sample set.
The results of this modeling strategy for the samples in the
validation set are shown in Table 4 and, when the average
correct classification results for both the Ligurian and non-
Ligurian samples are considered, demonstrate a significant
improvement over those obtained initially (Table 3). Most
models involve eight PLS loadings, whereas the percent correct
classification for Ligurian and non-Ligurian samples span the
ranges of 88.4-92.8 and 77.4-81.5 respectively. The most
accurate model overall involved a first-derivative spectral
pretreatment (13 data point gap) and produced correct clas-
sification rates of 92.8 and 81.5% for Ligurian and non-Ligurian
oils, respectively.

Reduced WaVelength Numbers. The jack-knife uncertainty test
was applied to the regression models reported above with the
aim of removing uninformative X-variables and potentially

improving model sensitivity and specificity. Classification results
are shown in Table 5; the main observations which may be
made about this summary table are that sensitivity and specificity
are very close to those obtained using the full X-variable data
set, whereas a small reduction in the number of loadings required
by each model is apparent. Therefore, there has been little or
no significant loss or degradation of model performance and
model simplicity has improved. Although very small variations
may be observed, predicted Y-values remain almost the same
for each individual olive oil sample when the jack-knifing is
carried out as had been prior to application of the uncertainty
test. This procedure reduced the number of variables used in
model development from 700 in the original full spectrum to
an average of 230 X-variables for the 10 attenuated models. As
a result, these latter models may have enhanced robustness over
the full spectrum variants given the reduction in the required
number of loadings, an advantage that could have commercial
significance.

Misclassified OliVe Oil Samples. A method to analyze the
misclassified samples was developed; of the 10 models that were
created for each technique, samples which were misclassified
by 7 or more of these models were selected as being misclas-
sified. This analysis was carried out for the models created using
equal numbers of Ligurian and non-Ligurian samples for the
calibration set and validated using a separated sample set that
consisted of 70 Ligurian samples and 563 non-Ligurian samples.
Of the 70 Ligurian samples (23 from harvest 1, 24 from harvest
2, and 23 from harvest 3), 5 samples were misclassified by 7 or
more models before the uncertainty test was applied and the
same 5 samples were similarly misclassified by 7 or more
models after the application of the uncertainty test. These 5
samples contained 3 samples from harvest 1 and 2 samples from
harvest 2; no Ligurian samples from harvest 3 were misclassified
by 7 or more models. The 3 samples that originated in the
Liguria region from harvest 1 were non-PDO olive oils. More
information is known about the samples from harvest 2; both
are PDO olive oils, one is simply labeled “extra virgin” and
the other, “Riviera Ligure”. Both of these oils originated in the
Savona province, the first “extra virgin” oil from Andora and
the second “Riviera Ligure” oil from Balestrino. It is difficult
to claim any pattern exists in the data with any degree of
certainty because the number of misclassified samples is so
small.

Of the 563 non-Ligurian samples in the validation set (204
from harvest 1, 220 from harvest 2, and 139 from harvest 3,
representing each of the countries shown in Table 1) 93
samples were misclassified by 7 or more models prior to the

Table 3. PLS-DA Carried out on the Full Dataset (n ) 913) Using Full
(Leave-One-Out) Cross-Validation

% correct classification

data pretreatment #L Ligurian non-Ligurian

raw data 8 32.9 95.0
first deriv, 5 points 8 42.9 95.7
first deriv, 9 points 9 44.3 95.6
first deriv, 13 points 8 36.2 95.7
first deriv, 21 points 9 40 95.3
second deriv, 5 points 7 49.5 95.6
second deriv, 9 points 7 43.8 96.4
second deriv, 13 points 8 47.1 96.0
second deriv, 21 points 6 42.4 95.9
SNV 7 31.9 94.2

Table 4. PLS-DA Results Using Equal Numbers of Ligurian (140) and
Non-Ligurian (140) Olive Oil Samples in the Calibration Set and
Subsequent Validation Models Using the Remaining Samples (70 Ligurian
and 563 Non-Ligurian)

% correct classification

data pretreatment #L Ligurian non-Ligurian

raw data 8 85.5 78.7
first deriv, 5 points 8 88.4 80.6
first deriv, 9 points 8 88.4 80.6
first deriv, 13 points 8 92.8 81.5
first deriv, 21 points 9 91.3 77.4
second deriv, 5 points 9 92.8 79.4
second deriv, 9 points 9 91.3 79.8
second deriv, 13 points 8 88.4 79.4
second deriv, 21 points 7 87.0 81.2
SNV 6 87.0 77.4

Table 5. PLS-DA Results Using Equal Numbers of Ligurian (140) and
Non-Ligurian (140) Olive Oil Samples in the Calibration Set and
Subsequent Validation Models Using the Remaining Samples (70 Ligurian
and 563 Non-Ligurian) Having Subjected the Original Data Set to the
Uncertainty Variable Selection Algorithm

% correct classification

data pretreatment #L Ligurian non-Ligurian

raw data 6 88.4 77.6
first deriv, 5 points 6 87 80.5
first deriv, 9 points 8 88.4 79.9
first deriv, 13 points 7 92.8 78.7
first deriv, 21 points 7 91.3 80.3
second deriv, 5 points 7 91.3 75.3
second deriv, 9 points 7 92.8 79.4
second deriv, 13 points 8 85.5 77.3
second deriv, 21 points 6 91.3 78.2
SNV 6 85.5 77.6
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application of the uncertainty test: 20 from harvest 1, 35 from
harvest 2, and 38 from harvest 3. The majority of these 93
misclassified samples (76 in all) were Italian samples, which
is to be expected both because there are far more Italian
samples in the sample set, because the regions are geographi-
cally more similar to Liguria, and because they may use the
same or related olives in the production of these oils. There
were also 8 Spanish, 7 Greek, and 2 French samples
misclassified. There is no clearly discernible pattern in the
misclassified Italian samples, with the oils originating in
Puglia (n ) 25), Campania (n ) 10), Veneto (n ) 8), Lazio
(n ) 6), Toscana (n ) 6), Umbria (n ) 5), Calabria (n ) 3),
Trentino Alto Adige (n ) 3), Marche (n ) 3), Molise (n )
2), Sicilia (n ) 2), Emilia Romagna (n ) 2), and Abruzzo
(n ) 1). Expressed as a percentage of the relevant validation
set for each region, these are 41.7, 41.7, 30.8, 13.0, 54.6,
12.2, 15.0, 50.0, 37.5, 8.0, 5.1, 33.3, and 4.8%, respectively.
The physical distance between regions does not seem to be
the factor causing confusion for the models; within Italy, the
regions Toscana, Trentino Alto Adige, Emilia Romagna, and
Veneto are considerably closer geographically to Liguria than
Puglia or Campagnia. However, the former group does not
as a rule have higher misclassification rates than the latter.
One fact which is clear is that, as was the case for the
Ligurian olive oils, the application of the uncertainty test
did not alter greatly the samples which were misclassified;
following the application of the uncertainty test 90 non-
Ligurian samples were misclassified by 7 or more models,
of which 85 overlapped with the 93 misclassified prior to
the application of the uncertainty test. This suggests that
whether the uncertainty test was applied or not, it is roughly
the same samples which are being misclassified by the
models. It can thus be concluded that applying the uncertainty
test does not cause the models to lose much, if any, important
information.

Overall, it may be concluded that NIR spectroscopy
coupled with chemometric analysis of data provides a
promising tool for geographical classification of olive oils.
Best results of 0.93 sensitivity and 0.82 specificity were
achieved for PLS-DA models developed using equal numbers
of Ligurian and non-Ligurian samples in calibration sets and
validated using a separate sample set. These levels of
accuracy may be sufficient for sample screening purposes.
Models created using considerably more non-Ligurian samples
than Ligurian samples were biased toward the non-Ligurian
samples, and the predictive capacities of these models were
consequently relatively poor.

The application of the uncertainty variable selection
algorithm made no improvement for the PLS-DA models
developed using equal numbers of Ligurian and non-Ligurian
olive oil samples in terms of predictive capacity. The
misclassified rate of Ligurian samples was roughly the same
for models created with or without the uncertainty test,
proving that the elimination of sections of the NIR spectra
did not decrease the prediction capacity of the models
developed and that no important information was lost due to
the application of this technique.

Transition of this technique into an industrial setting would
require the establishment of a larger database that would take
into account greater variability in factors such as weather
conditions at the time of harvest. Given that NIR spectroscopy
is a fast and relatively cost-effective method, it would be an
appropriate technique for deployment as a screening method
for dealing with large numbers of samples quickly and

economically. For 100% accuracy, samples that are misclas-
sified by NIR techniques would require further confirmatory
analysis using established wet chemistry techniques.
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